

From Mine to User: Production and Procurement Systems of Siliceous Rocks in the European Neolithic and Bronze Age

Proceedings of the XVIII UISPP World Congress
(4-9 June 2018, Paris, France)
Volume 10

Session XXXIII-1&2

edited by
Françoise Bostyn, François Giligny
and Peter Topping

ARCHAEOPRESS ARCHAEOLOGY

ARCHAEOPRESS PUBLISHING LTD
Summertown Pavilion
18-24 Middle Way
Summertown
Oxford OX2 7LG

www.archaeopress.com

ISBN 978-1-78969-711-7
ISBN 978-1-78969-712-4 (e-Pdf)

© Archaeopress, UISPP and authors 2021

Cover image: Map of siliceous raw material deposits on the Ryczów Upland (drawing by M. T. Krajcarz)

This book is available direct from Archaeopress or from our website www.archaeopress.com

This work is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License

UISPP PROCEEDINGS SERIES VOLUME 10 – From Mine to user: Production and Procurement Systems of Siliceous Rocks in the European Neolithic and Bronze Age

UISPP XVIII World Congress 2018

(4-9 Juin 2018, Paris)

Session XXXIII-1&2

VOLUME EDITORS:

Françoise Bostyn, François Giligny, Peter Topping

SERIES EDITOR: The Board of UISPP

SERIES PROPERTY: UISPP – International Union of Prehistoric and Protohistoric Sciences
© 2021, UISPP and authors

KEY-WORDS IN THIS VOLUME:

Neolithic, Bronze Age, Europe, siliceous rocks, flint mines, procurement system

UISPP PROCEEDINGS SERIES is a printed on demand and an open access publication,
edited by UISPP through Archaeopress

BOARD OF UISPP: François Djindjian (President), Marta Arzarello (Secretary-General), Apostolos Sarris (Treasurer), Abdoulaye Camara (Vice President), Erika Robrahn Gonzalez (Vice President). The Executive Committee of UISPP also includes the Presidents of all the international scientific commissions (www.uispp.org).

BOARD OF THE XVIIIe UISPP CONGRESS: François Djindjian, François Giligny, Laurent Costa, Pascal Depaepe, Katherine Gruel, Lioudmila Iakovleva, Anne-Marie Moigne, Sandrine Robert

Foreword to the XVIII UISPP Congress Proceedings

UISPP has a long history, originating in 1865 in the International Congress of Prehistoric Anthropology and Archaeology (CIAAP). This organisation ran until 1931 when UISPP was founded in Bern. In 1955, UISPP became a member of the International Council of Philosophy and Human Sciences, a non-governmental organisation within UNESCO.

UISPP has a structure of more than thirty scientific commissions which form a very representative network of worldwide specialists in prehistory and protohistory. The commissions cover all archaeological specialisms: historiography; archaeological methods and theory; material culture by period (Palaeolithic, Neolithic, Bronze Age, Iron Age) and by continents (Europe, Asia, Africa, Pacific, America); palaeoenvironment and palaeoclimatology; archaeology in specific environments (mountain, desert, steppe, tropical); archaeometry; art and culture; technology and economy; biological anthropology; funerary archaeology; archaeology and society.

The UISPP XVIII World Congress of 2018 was hosted in Paris by the University Paris 1 Panthéon-Sorbonne with the strong support of all French institutions related to archaeology. It featured 122 sessions, and over 1800 papers were delivered by scientists from almost 60 countries and from all continents.

The proceedings published in this series, but also in issues of specialised scientific journals, will remain as the most important legacy of the congress.

L'UISPP a une longue histoire, à partir de 1865, avec le Congrès International d'Anthropologie et d'Archéologie Préhistorique (C.I.A.A.P.), jusqu'en 1931, date de la Fondation à Berne de l'UISPP. En 1955, l'UISPP est devenu membre du Conseil International de philosophie et de Sciences humaines, associée à l'UNESCO. L'UISPP repose sur plus de trente commissions scientifiques qui représentent un réseau représentatif des spécialistes mondiaux de la préhistoire et de la protohistoire, couvrant toutes les spécialités de l'archéologie : historiographie, théorie et méthodes de l'archéologie ; Culture matérielle par période (Paléolithique, néolithique, âge du bronze, âge du fer) et par continents (Europe, Asie, Afrique, Pacifique, Amérique), paléoenvironnement et paléoclimatologie ; Archéologie dans des environnements spécifiques (montagne, désert, steppes, zone tropicale), archéométrie ; Art et culture ; Technologie et économie ; anthropologie biologique ; archéologie funéraire ; archéologie et sociétés.

Le XVIII^e Congrès mondial de l'UISPP en 2018, accueilli à Paris en France par l'université Paris 1 Panthéon-Sorbonne et avec le soutien de toutes les institutions françaises liées à l'archéologie, comportait 122 sessions, plus de 1800 communications de scientifiques venus de près de 60 pays et de tous les continents.

Les actes du congrès, édités par l'UISPP comme dans des numéros spéciaux de revues scientifiques spécialisées, constitueront un des résultats les plus importants du Congrès.

Marta Azarello
Secretary-General /
Secrétaire général UISPP

Contents

List of Figures	ii
From Mine to user: Production and Procurement Systems of Siliceous Rocks in the European Neolithic and Bronze Age.....	v
Introduction.....	v
Cantacorbs: Recovering a forgotten Neolithic site in the Prades Mountains (Rojals, Montblanc, NE Iberia).....	1
Juan Luis Fernández-Marchena, José Ramón Rabuñal, Gala García-Argudo, Diego Lombao, María Soto, Josep Vallverdú	
The use of landscape and geo-resources at microregional scale during the later part of the Late Glacial in the south-eastern part of the Ryczów Upland (Polish Jura).....	16
Magdalena Sudoł-Procyk, Maciej T. Krajcarz	
‘Ostroga’ in Ruda Kościelna (Central Poland) – the oldest point of banded flint exploitation?.....	31
Janusz Budziszewski, Witold Gruźdź, Michał Jakubczak, Michał Szubski	
‘Chocolate’ flint mining from Final Palaeolithic up to Early Iron Age – a review.....	42
Dagmara H. Werra, Katarzyna Kerneder-Gubała	
Copper Age lithic workshop on Mount Doc, Segusino-Treviso, North-eastern Italy: Preliminary report on new research.....	57
Rossella Duches, Emanuela Gilli, Marco Peresani	
La minière à silex néolithique de Lisle « les Sablons » (Loir-et-Cher, France). Premiers résultats de 3 campagnes de fouille de 2016 à 2018.....	65
Harold Lethrosne, Olivia Dupart, Clément Recq	
Neolithic quarries and knapping in northern Corsica. The rhyolite deposit of Alzu Plateau.....	78
Adrien Reggio, Nadia Ameziane-Federzoni	
Ateliers de taille, habitats et sites d'extraction du silex de la fin du Ve au IIIe millénaire avant notre ère dans le bassin minier Marne et Morin (Seine-et-Marne).....	87
Véronique Brunet	
Borownia upon the River Kamienna (Poland) – a prehistoric mine of striped flint in light of the first excavations.....	113
Jacek Lech	
List of authors	131

List of Figures

J. L. Fernández-Marchena *et al.*: **Cantacorbs: Recovering a forgotten Neolithic site**

Figure 1. Location of the Cantacorbs site in the Iberian Peninsula	2
Figure 2. Faunal remains from Capdevila collection	5
Figure 3. Map of the raw material outcrops from Capdevila collection lithic remains	6
Figure 4. Selection of retouched artifacts from the Capdevila collection	7
Figure 5. Selection of retouched artifacts from the new excavations in Cantacorbs site	8
Figure 6. Selection of borers and photograph of the only one of these perforators found in the Capdevila collection	10
Figure 7. Selection of retouched artifacts and photograph of the artifacts located in the Capdevila collection	11
Figure 8. 3D models of cores from the Capdevila collection (A) and from the new excavations (B)	12

M. Sudoł-Procyk, M. T. Krajcarz: **The use of landscape and geo-resources at microregional scale**

Figure 1. Location of Ryczów Upland (A) within Kraków-Częstochowa Upland on a map of Poland	17
Figure 2. Map of siliceous raw material deposits on the Ryczów Upland	19
Figure 3. The landforms in the surroundings of the chocolate flint outcrop based on the analysis of Digital Terrain Model	20
Figure 4. Geomorphology of the selected area of flint mine in Udorka Valley and the progress of archaeological works by July 2018	20
Figure 5. Cross-section along the slope in the area of flint mine in Udorka Valley	21
Figure 6. Pseudomorphs of ice wedges filled with loess, in which the flint artifacts were documented	22
Figure 7. Selected lithic artifacts from chocolate flint, Poręba Dzierżna, com. Wolbrom, małopolskie voivodeship	23
Figure 8. Selected lithic artifacts, Perspektywiczna Cave, com. Wolbrom, małopolskie voivodeship	25
Figure 9. Selected lithic artifacts, Kleszczowa, com. Pilica, śląskie voivodeship	27
Figure 10. Selected lithic artifacts from striped flint, Cisowa, com. Pilica, śląskie voivodeship	28
Table 1. Sites with documented Late Paleolithic cultural levels in the southern part of Ryczów Upland, included into this study	18

J. Budziszewski *et al.*: **‘Ostroga’ in Ruda Kościelna (Central Poland)**

Figure 1. Prehistoric mining fields of banded flint along the lower Kamienna river	33
Figure 2. Walk survey on the area of ‘Ostroga’ mining field in Ruda Kościelna, Ostrowiec Świętokrzyski district	34
Figure 3. Visualisation of the quality of laser scanning at the area of ‘Ostroga’ mining field in Ruda Kościelna, Ostrowiec Świętokrzyski district	35
Figure 4. Examples of different visualisations of digital terrain model of the ‘Ostroga’ mining field in Ruda Kościelna, Ostrowiec Świętokrzyski district	35
Figure 5. Pseudo-3D visualisation of the area of ‘Ostroga’ mining field in Ruda Kościelna, Ostrowiec Świętokrzyski district	36
Figure 6. ‘Ostroga’ mining field in Ruda Kościelna, Ostrowiec Świętokrzyski district	37
Figure 7. ‘Ostroga’ mining field in Ruda Kościelna, Ostrowiec Świętokrzyski district	38

D. H. Werra, K. Kerneder-Gubała: **‘Chocolate’ flint mining**

Figure 1. ‘Chocolate’ flint locations in pre-Quaternary formations on the northeastern outskirts of the Holy Cross Mountains	46
Figure 2. a, b Orlisko site II, trench I-4; cd – Tomaszów, site 1	48
Figure 3. a, b Polany Kolonie, site II; c, d – Polany II, Radom distr	50
Figure 4. Outline of shafts profiles from ‘chocolate’ flint mines in chronological order	51
Table 1. Characteristics of ‘chocolate’ flint mine in chronological order	43

R. Duches, E. Gilli, M. Peresani: **Copper age lithic workshop
on Mount Doc**

Figure 1. Position of Mount Doc in the context of the Pre-Alps of Treviso	58
Figure 2. Ridge of Mount Doc, location of the survey and excavation area.....	59
Figure 3. Mount Doc-Segusino (Treviso) – Sector III, excavations 2003. Preforms	60
Figure 4. Mount Doc-Segusino (Treviso) – Sector III, excavations 2003. Core, refitting.....	61
Figure 5. Mount Doc-Segusino (Treviso) – Sector III, excavations 2003. Core	62
Figure 6. Mount Doc-Segusino (Treviso) – Sector III, excavations 2003. Tools	63
Figure 7. Mount Doc-Segusino (Treviso) – Surface collection findings	64

H. Lethrosne *et al.*: **La minière à silex néolithique
de Lisle « les Sablons »**

Figure 1. A – Localisation du site de Lisle « les Sablons » ; B – le site dans son contexte topographique; C – Transect est-ouest des formations géologiques du coteau; D – Transect nord-sud des formations géologiques du coteau.....	67
Figure 2. A – Vue en plan de la fosse néolithique F9 ; B – Vue en coupe du comblement terminal de F7 et en plan le rejet des déchets de tailles en silex	70
Figure 3. A – Coupe de la fosse F10 dans la coupe géo-archéologique de référence. Le fait F12 est un fossé historique ; B – Vue en coupe de F10	71
Figure 4. Fragments d'ébauches de haches en silex	75

A. Reggio, N. Ameziane-Federzoni: **Neolithic quarries and
knapping in northern Corsica**

Figure 1. Localisation of 'Plateau d'Alzu'	79
Figure 2. The different areas of the site.....	80
Figure 3. a, the landscape in the quarry area; b, Punta Rusinca; c, shelter 1	81
Figure 4. 1 to 7, arrowhead in rhyolite from 'Shelter 1'; 8, arrowhead in obsidian from 'Shelter 1'; 9, arrowhead in rhyolite from quarry	84

V. Brunet: **Ateliers de taille, habitats et sites d'extraction du silex**

Figure 1. Localisation du secteur d'étude et du complexe minier Marne-Morin	88
Figure 2. Carte des sites étudiés du Néolithique moyen II	90
Figure 3. Les datations radiocarbonées disponibles pour le Néolithique moyen II	92
Figure 4. Carte des sites étudiés du Néolithique récent.....	92
Figure 5. Datations radiocarbone disponibles pour le IIIe millénaire	94
Figure 6. Carte des sites étudiés du Néolithique final	95
Figure 7. Les ressources siliceuses locales.....	96
Figure 8. Les matières premières au sein des assemblages étudiés	96
Figure 9. Répartition des plaquettes par contexte	97
Figure 10. Stratégie d'acquisition, circulation et productions de la fin du Ve au IIIe millénaire.....	98
Figure 11. Les haches taillées du Néolithique moyen II	102
Figure 12. Les haches polies du Néolithique moyen II	103
Figure 13. Les haches taillées du Néolithique récent	104
Figure 14. Les haches polies du Néolithique récent	105
Figure 15. Les haches taillées du Néolithique final.....	106
Figure 16. Les haches polies du Néolithique final.....	107
Figure 17. Les haches polies du dépôt.....	108
Table 1. Les sites du Néolithique moyen II étudiés	91
Table 2. Les sites du Néolithique récent étudiés	93
Table 3. Les sites du Néolithique final étudiés	95
Table 4. Les épaisseurs des plaquettes par période	97

J. Lech: **Borownia upon the River Kamienna (Poland)**

Figure 1. Borownia flint mine site (Poland). Polished axe blade made from Upper Jurassic striped flint, found in Segment B of the mining field	114
Figure 2. Borownia (Poland). Prehistoric mining field in division for segments A – E and the Kamienna River valley	115

Figure 3. Borownia (Poland). Segment A. Prehistoric mining field showing shaft hollows.....	116
Figure 4. Borownia (Poland). Segment A. The main cross-shaped trench.....	117
Figure 5. Borownia (Poland). Prehistoric flint mine. East fragment of filling in shaft A1. Upper part after excavations ended in 2017	118
Figure 6. Borownia (Poland). Segment A. Prehistoric flint mine	119
Figure 7. Borownia (Poland). Prehistoric flint mine. Trial reconstruction of shaft A1.....	119
Figure 8. Borownia (Poland). Prehistoric flint mine. Trial reconstruction of segment A	120
Figure 9. Borownia (Poland). Segment D. Prehistoric flint mine. Early axe roughout	121
Figure 10. Borownia (Poland). Flint mine. Radiocarbon dating.....	123
Table 1. Structure of flint and stone material from excavations carried out in 2017, divided into four morphological groups	121

From Mine to user: Production and Procurement Systems of Siliceous Rocks in the European Neolithic and Bronze Age

Introduction

The 18th UISPP congress held in Paris in June 2018 provided the opportunity to assemble the members of the commission for 'Flint Mining in Pre- and Protohistoric Europe' as well as other European researchers during two full day conference sessions. The first session 'Siliceous rocks: procurement and distribution systems' was aimed at analysing one of the central research issues related to mining, i.e. the production systems and the diffusion of mining products. The reconstruction of extraction methods, the identification of specific toolkits developed for this activity, and the social organisation behind mining are key factors in the interpretation of mining phenomena. The impact of extraction on the environment is important but it can also be interpreted in terms of territoriality, and possibly associated with group mobility across wide areas. In this case the estimation of the number of people involved in the exploitation phase is fundamental, although this remains invariably a difficult question to answer. The study of mining products is a second area of research, more particularly in regard to the identification of imported products within the mass of local products, as well as the identification of local products destined to be exported. A central element in this is the definition of selection criteria relating to potential export products. The other area for consideration proposed to the conference participants related to the social organisation underlying the different fields of activities. The use of mapping and statistical tools can help to identify the production places and the scale of exchange systems involving intermediaries at several levels (villages or central places). This makes it possible to reconstruct the distribution networks of different products and to propose models involving territorial management at local, regional or long-distance scales.

The second session 'Flint mines and chipping floors from prehistory to the beginning of the nineteenth century' focused on knapping activities carried out on the periphery of the extraction sites. Excavations have provided evidence for the presence of knapping workshops in the immediate vicinity of the mine shafts, or in the upper fills of the shafts themselves, where knappers had cleaned up their working spaces or post-abandonment erosion phenomena had levelled the ground surface and filled low-lying surface features. In addition, recent studies have shown the existence of knapping areas within villages, as well as in sites which are considered as being intermediary places between extraction sites and the settlements. The analyses of the knapping workshops make it possible to describe the processes lying behind thedebitage, to determine what the production aims were and as a result to identify groups of producers. The comparison of the various stages of the chaîne opératoire sequences, and the quality of the product make it possible to highlight different levels of skill and the artefact distributions can identify where more – or less – specialised actors participated in the distinct working spaces. This approach also contributes to an enhanced understanding of the social organisation of the communities being studied.

The contribution by Juan Luis Fernández-Marchena *et al.* presents the current knowledge concerning an often disregarded site, albeit one known as early as the 1930s, comprising an open-air workshop discovered in the Tarragona region. The data stemming from early surface collections and from recently resumed archaeological excavations, make it possible to describe the management and production systems for the local raw materials which were aimed at blade production. Abundant production waste was present as well as numerous hammerstones made from quartz and quartzite. 3D documentation of these workings was presented and considered

an asset because of its academic value. Radiocarbon dating carried out on ancient materials made it possible to date these remains to the Post-Cardial Early Neolithic. The nature of this site – a unique case in the region because of its location at an altitude of 1000 m – raises the question of seasonality and its relationship with the settlement sites within a territory. The authors stress the fact that it is important not to disregard older documentation, which may have been the case for researchers who have had more abundant context-based data at their disposal since the large rescue excavations which were carried out during the 1980s and later. Nonetheless, it would be worth restudying the data from certain sites which are still poorly documented by excavations, and this current project contributes to this trend.

The paper by Magdalena Sudoł-Procyk and Maciej T. Krajcarz develops the territorial approach to a microregion in the southern part of Poland during the Final Palaeolithic. The circulation of raw materials, mainly 'chocolate' flint, is an indicator for reconstructing the mobility of human groups during that period. Several extraction sites were identified, including traces of pits still visible on the surface and in others recorded in the stratigraphy of the Kleszczowa region. Lithic analysis makes it possible to identify blade production which includes core shaping with crests. South-east of Ryczów occasional cave occupations occur, which are thought to form part of a logistical system with the open-air sites in the region of the Barańskie Mountains. The circulation of raw materials in the form of prepared cores was also established. The importance of these sites within a wider procurement network still remains to be determined in detail.

Remaining in Poland, the contribution of Janusz Budziszewski *et al.* looks at the issue of the earliest exploitation of 'striped' flint, an issue which has been debated for about a hundred years through an extensive literature. This type of flint was characteristic of the large flint mine of Krzemionki. Thanks to Lidar imaging and surface collection, a dozen new exploitation zones have been identified over the last few years including four mines encompassing areas ranging from 2 to 4 ha. The authors describe here one of the smallest sites which was discovered in 1982, the 'Ostroga' mine in Ruda Kościelna, situated upon a slope with a configuration which differs from the traditional mines located on plateaus. The extraction of raw material on a hillslope has influenced the downslope movement of soils and waste which are probably in secondary contexts, creating a characteristic relief across the site. The artefacts collected on the surface are few but from a technical point of view they are homogenous, and include flake production and axeheads with a quadrangular cross-section. This distinctively Neolithic tool production shows similarities with the sequence at Krzemionki and can probably be attributed to the Funnel Beaker Culture, or possibly to the Globular Amphora Culture. This hypothesis will be tested by excavation at this site.

An overview of 'chocolate flint' exploitation is presented here by Dagmara H. Werra and Katarzyna Kerner-Gubała. This raw material, mentioned above for its use during the Final Palaeolithic, is one of the most renowned in Poland. It was used for a large number of products and was widely exploited by mining until the Bronze Age in the south-eastern part of Poland. It was exported as far as the Carpathian Basin. Five out of the twenty-six known sites are presented in more detail here: Orońsko, Tomaszów, Polany (site II), Polany Kolonie (site II) and Wierzbica 'Zele', which are located in two mining districts, Szydłowiec and Radom. The chronological development of extraction sites and their products is described, from the earliest mining dated to the Final Palaeolithic to those from the end of the Bronze Age. This development ranges from simple, relatively shallow shafts with or without a niche at the base during the Palaeolithic period, to narrow shafts up to 4.20 m deep with niches during the Middle and Final Neolithic, then to larger shafts up to 4 m deep during the Early and Middle Bronze Age and lastly very large shafts up to 7+ m deep during the Final Bronze Age. Blade production is evidenced for the Palaeolithic period. Blade production and rare axehead production is known during the Neolithic period, and raw materials of higher quality were chosen for blade production using unipolar or bipolar cores. During the Early Bronze Age bifacial debitage predominates. By the Late Bronze Age the blades and flakes are of a large size

and flint was still used in central-eastern Europe. In conclusion, the authors highlight the quality and the longevity of exploitation of this raw material, including changes to the type and scale of extraction sites and their products but few changes to the extraction tools.

Rossella Duches, Emanuela Gilli, and Marco Peresani analyse the data stemming from a high-altitude site in the Italian Pre-Alps in the Treviso region, Mount Doc, which dates from the Neolithic/Bronze Age transition. This site was excavated during two seasons in 2001 and 2003 and yielded abundant lithic waste and several hammerstones defining a knapping workshop dedicated to the shaping of blocks, tabular sheets or blades. The initial stages of the *chaîne opératoire* for foliate points was identified, and the preforms appear to have been subsequently taken to a different place for finishing. The same situation applies to blade production. In addition, distinctive failed pieces were re-used on site, probably for the production of arrowheads, dagger blades and foliate scrapers. A radiocarbon date indicating the first half of the 5th millennium should be considered with caution, because the assemblage is more typical of the end of the 4th millennium BCE. Further radiocarbon dates are needed to confirm this hypothesis. Lastly, this site can be associated with a network connecting the Belluno valley with the high plain of Treviso which is thought to play a role in the supply of lithic products to this region.

Harald Lethrosne, Olivia Dupart and Clément Recq present the recent excavation of a site in the Loir valley, the site of Lisle 'les Sablons' in the Loir basin. This site was discovered early in the 19th century by field surveys and was covered by thick colluvial deposits which had disturbed abundant knapping waste, alongside shallow pits filled with waste, probably related to flint extraction. The aim of this extraction was the production of flaked axeheads, which lack the grinding and polishing stages and reveal poor skills. A more accurate dating of the site is awaited. The axeheads resemble other regional examples such as those discovered at Pezou 'la Chenevière-Dieu', also located in the Loir valley. The results are in keeping with the general framework of the evolution of axe production in Northern France, and make it possible to better understand territorial organisation and the role of sites related to lithic production in social and economic terms.

Adrien Reggio and Nadia Ameziane-Federzoni report on the exploitation of rhyolite, a volcanic rock on Corsica. Discovered during fieldwalking, this high altitude site on the Alzu plateau appears to be a quarry. Excavations were carried out both in the quarry and in shelters or open air areas. Flake debitage was discovered, as well as the reduction of blocks or the shaping of flakes in nearby shelters. In addition, the presence of imported materials such as obsidian was noted. The issue of the export of the products and the extent of their distribution still need to be characterised. The presence of arrowheads in nearby settlements is associated with this quarry. The presumed dating corresponds to the Torrean culture during the 3rd millennium BCE, who specialised in the exploitation of materials at higher altitudes.

Véronique Brunet provides an overview of the mining region surrounding the Jablines mine in the Marne valley near Paris, a region that produced axeheads between the end of the 5th and the 3rd millennium BCE. The documentation relating to the Jablines mine, which was excavated on the occasion of development-led investigations carried out in the 1980s, has now been completed by the discovery of peripheral workshops or intermediate workshops between this mine and the settlements, which were also discovered during salvage excavations. This evidence makes it possible to model the question of territorial organisation and economic specialisation at these sites. The products are distributed over a long period of time spanning two millennia and make it possible to analyse the issue of knapping skills.

Jacek Lech reviews the use of 'striped' flint in central Poland from the vast mining complex of Borownia, known since the 1920s. This site, originally dated to the Bronze Age, was exploited by a zone of mining shafts spread across an area of nearly 12 ha which has generally been very well preserved within a forest. Before 2017 it was only subject to non-destructive surface investigations,

but following this date it was excavated with the aim of collecting evidence for absolute dating for the submission of a request for its inclusion on the list of UNESCO World Heritage Sites as part of the property '*Krzemionki Prehistoric Striped Flint Mining Region*'. During this project shafts were identified and dated to the end of the Neolithic/beginning of the Bronze Age. The production of axe blades has been attested as well as that of Zele-type knives, characteristic of the Early Bronze Age. Settlement sites related to the Globular Amphora Culture are probably associated with this extraction site as part of a zone of economic activity.

F. Bostyn, F. Giligny, P. Topping