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Introduction1

For the past two decades, the Field Museum of Natural 
History has been a leader in the analysis, conservation, 
and preservation of archaeological and museum 
collections. There are an immeasurable number of 
researchers who have walked the museum’s halls, 
collaborated with museum scientists and curators, 
and advanced our understanding of the past and 
helped preserve the future through a diversity of 
research projects. However, of particular note are 
those researchers and projects that have relied on the 
Elemental Analysis Facility (EAF) at the Field Museum. 

Beginning as a casual lunch conversation between 
Drs. Laure Dussubieux and Heather Walder about the 
growing number of unpublished EAF research, the 
discussion has resulted in the compilation of these 
analytical projects in the form of two volumes, with 
one more in the pipeline. The first volume, edited 
by Dussubieux and Walder (2022), focuses on the 
analysis of glass bead artifacts using the laser ablation-
inductively coupled plasma-mass spectrometry (LA-
ICP-MS) laboratory at the EAF. This innovative volume 
included archaeological beads from around the world, 
and their analysis helped researchers reconstruct 
various chronological developments and human 
interactions. To build collaborative efforts, Dussubieux 

1 Contact author: Danielle J. Riebe, Department of Anthropology, 
University of Georgia, 355 S. Jackson St., Athens, GA 30602, USA. 
danielle.riebe@uga.edu

and Walder hosted a three-day workshop that allowed 
scholars to present their laboratory results, receive 
feedback from their colleagues, and incorporate the 
feedback into their final manuscripts. In a similar 
vein, the second volume, edited by Feinman and Riebe 
(this volume), started with a similar workshop on 
October 8, 2021, in which all authors presented their 
research in a “lightning-round” format and received 
feedback from the other participants and the editors. 
On February 4–5, 2022, a third workshop was held for 
the authors of the last publication that will focus on 
Andean ceramics and will be edited by Drs. Ryan Patrick 
Williams, M. Elizabeth Grávalos, and Luis Muro Ynoñán. 
Where the current volume differs from these other 
EAF compilations, however, are the materials studied 
and the analytical methods used. Obsidian, its origins, 
circulation, and use, are the focus of this volume, with 
most of the analyses conducted using the portable 
X-ray fluorescence (pXRF) devices in the EAF.

History of Elemental Analysis Facility

The origins of the EAF date to the early 2000’s with Dr. 
Patrick Ryan Williams as the director. In 2005, the EAF 
became more firmly established as a leading analytical 
facility with the hire of research scientist and manager, 
Dr. Laure Dussubieux. Working together, Williams and 
Dussubieux have built the EAF labs – including the 
pXRF Lab, LA-ICP-MS Lab, and Optical Mineralogy Lab 
– through a series of granting initiatives from both 
internal sources (Negaunee Fund, Grainger Scientific 

Chapter 1

Chipping Away at the Past: An Introduction

Danielle J. Riebe1

University of Georgia

Gary M. Feinman
Field Museum of Natural History

Abstract

Key to the analysis of the archaeological and geological materials presented in this volume is the Elemental Analysis Facility 
(EAF) and the instruments housed in the EAF at the Field Museum of Natural History. This center has grown over the past twenty 
years becoming a leader in compositional studies of archaeological specimens. In particular, obsidian has been intensively 
analyzed by researchers using various compositional techniques. While many volumes have focused on the nature of obsidian 
and/or its use and circulation in the past, this volume uniquely presents the research conducted on obsidian, both geological 
and archaeological materials, from across the Americas using the equipment housed in the EAF at the Field Museum of Natural 
History. In so doing, it provides a snapshot into the current status and contributions of obsidian sourcing research toward 
understanding trade, exchange, and mobility in the precolonial American past.
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Fund, Anthropology Alliance, Women’s Board) and 
external sources (National Science Foundation: 
BCS 0818401, BCS 1321731, BCS 1531394, BCS 0320903, BCS 
1628026, BCS 2016729; BCS 1649742). The growth of these 
laboratories and the investment in instrumentation 
has attracted researchers from all over the world, but it 
also has played a pivotal role in training and educating 
future scientists. The Field Museum and its curators and 
research scientists have close ties with the universities 
in the Chicago-land area, including Northwestern, the 
University of Chicago, and the University of Illinois 
at Chicago, and this uniquely positions interested 
students at these universities to learn about the 
different analytical techniques available in the EAF and 
to develop projects using these instruments and the 
collections at the Field Museum. Beyond training and 
working one-on-one with interested students, Williams 
and Dussubieux also developed and co-instruct a 
course, Analytical Archaeology (ANTH 494, UIC), that 
focuses on archaeometry and requires students to 
come up with a semester project utilizing one specific 
analytical technique. 

Promotion of the EAF goes beyond the classroom to the 
public at large. The museum hosts a bi-annual event 
known as Museum Nights, and every year the EAF has a 
booth for the public to learn more about the benefits of 
the facility. Often the pXRF devices are on display, and 
interested people can have objects tested to determine 
their composition and sometimes their authenticity. 
In 2018, Dussubieux, along with Drs. Carla Klehm and 
Danielle Riebe, organized a formal workshop that 
was open to the public and presented a wide range of 
compositional research conducted in the EAF. Similar 
platforms for research dissemination are intended to be 
held in the future.

The EAF, and those running it, have sought to create 
more than just a research center, and as the EAF has 
grown, so too has its impact. Over the past twenty 
plus years, the EAF has been instrumental in building 
collaborations, educating the public, and training 
future scientists. By investing and developing the 
labs associated with the EAF, there has been increased 
opportunities and methods to better reconstruct and 
model the archaeological past.

Discussion of Instrumentation

As previously mentioned, the EAF labs consists of 
the LA-ICP-MS Lab, the pXRF Lab, and the Optical 
Mineralogy Lab. The former two labs have been highly 
instrumental in compositional studies of archaeological 
and geological specimens. Selection of the method 
used to analyze the materials often comes down to 
several variables, including sample size, portability of 
sample or exportability from country of origin, number 

of and/or specific elements necessary to generate 
a distinctive compositional signature, the need for 
minimally destructive vs. non-destructive technique, 
and cost. Since the early 2000s, when the EAF was first 
established, instrumentation has changed, and below 
details a brief description of those devices housed in 
the LA-ICP-MS and pXRF laboratories.

LA-ICP-MS

The first major instrumentation grant for the EAF was 
funded by the National Science Foundation (BCS 0320903) 
and secured in 2003 by Drs. Patrick Ryan Williams, Gary 
Feinman, Menakshi Wadwha, and Phil Janney for a 
mass spectrometer and a scanning electron microscope 
(SEM). The original mass spectrometer purchased for 
the lab was a Varian Ultramass Quadrupole LA-ICP-MS 
with a New Wave UP213 system. While the samples 
could be introduced to the system as a liquid, solid 
sample introduction relied on specimens approximately 
smaller than 5cm in order to fit in the analysis chamber. 
This greatly limited the materials that could be studied, 
so to expand the abilities of the equipment and to allow 
larger specimens to undergo solid state sampling, 
collaborative efforts were made to create a modified 
adaptable chamber that utilized a New Wave UP266 
laser ablation system.

After receiving funding in 2015, in 2016 a new mass 
spectrometer was purchased to replace the original. 
The Thermo ICAP Q quadrupole ICP-MS continued to 
operate with the New Wave UP213 laser ablation system, 
and Dussubieux worked to ensure that results generated 
between the old and new mass spectrometers were 
comparable. As before, samples could be introduced 
into the ICP-MS either as a vaporized solid or in a liquid 
state.

The LA-ICP-MS analytical approach produced reliable 
measurements for over 50 elements. While considered 
a minimally destructive technique, solid ablation would 
result in sampling craters not visible to the naked eye. 
At the Field Museum, LA-ICP-MS has been used to 
analyze non-archaeological materials (Cook et al. 2006), 
but has been heavily relied upon to study archaeological 
materials (Dussubieux et al. 2016), including ceramics or 
other clay objects (Dussubieux et al. 2007; Golitko et al.
2016; Kreiter et al. 2014; Levine et al. 2013; Niziolek 2013; 
Piscitelli et al. 2015; Riebe 2021; Riebe and Niziolek 2015; 
Riebe et al. in press; Sharratt et al. 2009, 2015; Vaughn et al.
2011; Williams et al. 2019a, 2019b), pigments (Bonjean et 
al. 2015; Halperin and Bishop 2016), metals (Dussubieux 
2007; Dussubieux et al. 2008), stone (Goemaere et al.
2013; Golitko and Terrell 2012; Speer 2014), and glass 
(Dussubieux et al. 2008, 2009, 2010; Robertshaw et al.
2009, 2010; Schibille 2011; Walder 2013; Walder et al.
2021).  
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pXRF

Throughout the operation of the EAF, a number of 
different pXRF devices have been purchased and 
used for both conservation and research purposes, 
with the first device being added to the EAF around 
2007 with funding from the Grainger Scientific Fund. 
Later additional pXRF instruments would be secured 
with Negaunee funding. Generally, pXRF can reliably 
measure between 8–15 elements, however, the number 
and the specific measured elements vary depending 
on the instrument. The aspect that makes this device 
so appealing resides in its portability. This enables 
researchers to take the device to different countries 
and/or to the field, conduct analyses on materials in 
situ, and/or study those materials that cannot leave the 
country. 

In total, four different pXRF devices have been housed 
in the EAF pXRF Laboratory, including an Innov-X, 
a Bruker TRAcER III-V, a Bruker TRAcER III-SD, and 
a Niton XL3t 950 GOLDD+. While these devices also 
have been used to study ceramics (Sharratt et al. 2019; 
Williams et al. 2012) and metals (Dussubieux and Walder 
2015), a majority of the compositional studies utilizing 
the pXRF instruments in the EAF have focused on 
volcanic materials, such as basalt (Hastorf et al. in press; 
Janusek and Williams 2016; Janusek et al. 2012; Palumbo 
et al. 2015; Williams et al. 2015) and obsidian (Bélisle et 
al. 2020; Feinman et al. 2013, 2018, 2019a, 2019b; Golitko 
and Feinman 2015; Golitko et al. 2010, 2012; Meierhoff et 
al. 2010; Millhauser et al. 2011, 2015; Moholy-Nagy et al.
2013; O’Shea et al. 2021; Riebe 2018, 2019, 2021; Riebe et 
al. 2018, in press; Ruka et al. 2019).

Volume Contributions

The recent EAF-focused volume (Dussubieux and 
Walder 2022), as well as the current one, illustrate how 
integral the EAF has been in the lives and research of 
the contributors. Most of the chapters in this volume 
are co-authored with collaborators spanning the globe. 
Additionally, several of the authors (Chacaltana, Golitko, 
Reid, Riebe, and Sharratt) began as graduate students 
in the EAF and now are established research scientists. 
Overall, the Field Museum, its collections, and the EAF 
have offered researchers the opportunity to advance 
new lines of research, specifically as they relate to 
networks and the movement of people and goods. Many 
of the contributions in the volume highlight the reliance 
on existing collections at the Field Museum or other 
collaborating institutions, as well as the development 
of new investigatory methods. Together, the chapters 
explore a variety of regions, time periods, and topics, but 
all contribute to the advancement and development of 
anthropological research, focused on trade, exchange, 
and mobility, through compositional studies.

Specifically, this volume presents the results of 
compositional studies conducted in the pXRF 
Laboratory of the EAF at the Field Museum and focuses 
on geological and archaeological obsidians from across 
the Americas. Although numerous techniques are 
available for compositionally studying obsidian (see 
Chapter 2 for further discussion), pXRF is an expedient 
and efficient technique for sourcing the geological 
material. From utilitarian to ornamental, obsidian has 
been used by peoples for thousands of years. While 
the material is unique in terms of its composition as 
a volcanic rock, its acquisition, use, and alteration 
by people is truly what makes the silicious object of 
remarkable importance for archaeologists. 

The volume is divided into three sections based on 
geography (North America, Mesoamerica, and South 
America), and the chapters cover a wide breadth of 
archaeological topics. Several chapters deal with 
obsidian procurement patterns in specific regions (see 
Nicholas et al. – Chapter 5; Williams et al. – Chapter 10) 
or across vast expanses of land (Golitko et al. – Chapter 
3; Riebe et al. – Chapter 4; Feinman et al. – Chapter 8). 
Other chapters focus on individual sites to reconstruct 
changes in procurement patterns and intra-site material 
distribution (see Moholy-Nagy – Chapter 6), as well as 
highlight the role of marketplaces in the manufacture 
and distribution of finished goods (Cap – Chapter 7). 
Finally, several chapters focus on issues related to 
further developing archaeometric research through 
increased inter-laboratory collaborations (see Riebe 
et al. – Chapter 2) and the improvement of analytical 
techniques (see Reid et al. – Chapter 9). Together, the 
case studies in the volume explore the ways in which 
obsidian analyses have been used to investigate multi-
scalar interactions, socio-economic exchanges, and 
socio-cultural developments in the past (see Chapter 11 
for further elaboration). Several chapters (especially 4 
and 8) highlight the great potential of expanded sample 
sizes that can be achieved through the use of pXRF. Large 
samples allow analysis to extend beyond presence-
absence observations and to reveal more detailed 
patterns of quantitative variation. As technology 
continues to advance, so too will the methods used by 
researchers to study the archaeological record. In that 
sense, it is fascinating to view the tools of today as a 
means to study the tools of the past.
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